Article 13315

Title of the article

SENSING ELEMENTS OF MAGNETIC INDUCTIVE SENSORS ON NANOTUBES OF VARIOUS CONFIGURATION

Authors

Brazhe Rudol'f Aleksandrovich, Doctor of physical and mathematical sciences, professor, head of sub-department of physics, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), brazhe@ulstu.ru
Savin Andrey Fedorovich, Postgraduate student, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), a_f_savin@ mail.ru

Index UDK

681.586.78

Abstract

Background. Magnetic inductive sensors are widely used in precision navigation as electronic compasses and sensors of object’s position. Due to simplicity of the design, high sensitivity in combination with small working currents and a low level of noise they are of interest to biomagnetic instrument engineering provided reduction of sensing elements up to nanoscale sizes. The purpose of the work is to substantiate solvability of this problem using nanotubular solenoids with the core from ferromagnetic nanowire.
Materials and methods. The article offers a design of a magnetic inductive sensor on the basis of a relaxation generator on an operational amplifier with a sensing element in the form of a solenoid from an electroconductive supracrystalline nanotube. The core of the solenoid is executed from a ferromagnetic nanowire and isolated from the solenoid by means of a dielectric supracrystalline nanotube.
Results. Inductance, active resistance of a sensing element of a magnetic inductive sensor on the basis of supracrystalline nanotubes and the time constant of the RL chain of a relaxation generator were calculated at room temperature. The sensing element has diameter of 1,76 nm and length of 1 μm.
Conclusions. Creation of sensing elements for magnetic inductive sensors of nanoscale sizes on the basis of nanotubes of various configuration is technically feasible within the framework of modern nanotechnologies.

Key words

sensing elements, magnetic inductive sensors, nanotubes, biomagnetic instrument engineering, magnetic receptors.

Download PDF
References

1. Bratland T., Caruso M. J., Schneider R. W., Smith C. H. Sensors. 1998, vol. 5, no. 12, pp. 34−46.
2. Baranochnikov M. L. Mikromagnitoelektronika. T. 2. [Micromagnetic electronics. Vol. 2]. Moscow: DMK Press, 2014, 888 p.
3. Biogennyy magnetit i magnitoretseptsiya. Novoe o biomagnetizme. T. 2 [Biogenic magnetite and magnetic reception. The new about biomagnetism. Vol. 2]. Eds. by Dzh. Kirshvinka, D. Dzhonsa, B. Mak-Faddena. Moscow: Mir, 1989, 525 p.
4. Brazhe R. A., Karenin A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2011, no. 3 (19), pp. 131−139.
5. Brazhe R. A. Fizika suprakristallov [Physics of supracrystals]. Ulyanovsk: UlGTU, 2012, 162 p.
6. Brazhe R. A., Savin A. F. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2015, no. 1 (33), pp. 120−129.
7. Holmes J. D., Lyons D. M., Ziegler K. J. Chem. Eur. J. 2003, vol. 9, no. 10, pp. 2144–2150.
8. Kazakova O., Kulkarni J. S., Holmes J. D., Demokritov S. O. Phys. Rev. B. 2005, vol. 72, pp. 094415-1–094415-6.
9. Chen J.-H., Jang C., Xiao S., Ishigami M., Fuhrer M. S. Nature Nanotechnology. 2008, no. 3, pp. 206–209.
10. Volodin A., Buntinx D., Ahlskog M., Fonseca A., Nagy J. B., Van Haesendonk C. Nano Lett. 2004, vol. 4, no. 9, pp. 1775–1779.
11. Sun B., Yin H.-X., Li M.-M., Long Y.-Z., Gu C.-Z. Adv. Mater. Research. 2012, vol. 465, pp. 125–131.
12. Nikita M. Crystals. 2014, no. 4, pp. 466–489.

 

Дата создания: 28.12.2015 13:43
Дата обновления: 28.12.2015 15:57